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Abstract 

Global warming and eutrophication in fresh and coastal waters may mutually reinforce the symptoms they express and 
thus the problems they cause. 
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Introduction

“When sorrows come, they come not single spies, but in 
battalions,” said the usurping king in the Denmark of 
Shakespeare’s “Hamlet,” and so might we, when, in 
ravaging Earth’s resources, we multiply the problems.  
For decades we have faced the worldwide problem of 
eutrophication, first by treating symptoms with algicides, 
but increasingly by controlling nutrient loading. Now, 
especially from work on shallow lakes, we are realising 
that climate change is intensifying the symptoms of 
eutrophication in freshwaters (Jeppesen et al. 2010b;  
Fig. 1) and perhaps that eutrophication can concomitantly 
promote climate change (Fig. 2). In future we will need to 
intensify nutrient control just to hold the line, let alone 
make improvements to water quality (Trolle et al. 2011). 
We can control nutrients in waste waters, but those that 
run from the land are seemingly intractable. Climate 
change, by intensifying storms, affecting rainfall patterns, 
warming soils, and melting glaciers, will increase this 
diffuse nutrient loading (Jeppesen et al. 2011). 

Eutrophication is costly (Dodds et al. 2009). The 
solution is to reduce nutrient inputs, usually phosphorus 

but often also nitrogen (Elser et al. 2009), but restructur-
ing the ecosystem, through removal or treatment of 
sediment or manipulation of the fish community, 
sometimes speeds recovery. Piscivorous fish generally 
become scarcer with eutrophication, and the ultimate 
effect, through an increase in foraging fish and a decline in 
zooplankton grazers, is an increase in algae. The direct 
effects of nutrients are thus also tangled with the structure 
of food webs, and in turn the nature of food webs is 
influenced by climate.

Food webs and climate 

Fish communities in warm waters have lower numbers of 
strictly piscivorous fish but harbour increasing numbers of 
omnivores (Meerhof et al. 2007a, Texeira de Mello et al. 
2009, Moss 2010). Omnivores include small, rapidly 
reproducing fish (Jeppesen et al. 2010a), which, despite a 
longer growing season for zooplankton in warm waters, 
can remove virtually all effective grazers (Gyllstrøm et al. 
2005). Between 60º and 20º N, there is a decline in mean 
size of Cladocera from 1.3 to 0.6 mm (Gillooly and 
Dodson 2000), with large Daphnia rare in low-latitude 
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lakes except at high altitude. These changes may be a 
direct response to higher water temperature (Moore et al. 
1996) or driven by fish predation (Meerhoff et al. 2007a, 
Iglesias et al. 2011). Regardless, because climate change 
leads to warmer water, the biomass of large Daphnia will 
decline, and with it the ability to control phytoplankton. 
Other things being equal, algal crops will increase with 
warming, and because of the high temperature optima for 
growth of many cyanobacteria and their resistance to 
grazing by small zooplankters, the proportion of this 
sometimes-toxic group may increase (Elliot et al. 2006, 
Jöhnk et al. 2008, Paerl and Huisman 2008, Elliot 2010, 
Kosten et al. Forthcoming 2011). Together, cyanobacteria, 
through life histories that involve residence in sediments 
and vertical migration into the hypolimnion, and 
omnivorous, bottom-feeding fish that also mobilise 
phosphorus from the lake sediments to the surface waters, 
can create a positive feedback that frustrates attempts at 
nutrient control in warm waters (Havens and Schelske 
2001). 

Climate and the roles of plants

An important feature in shallow lakes and littoral zones is 
the presence of submerged plants, through whose refuges 
zooplankters and their predatory fish can coexist in lakes 
at high latitudes (Timms and Moss 1984). Submerged 

vegetation is often abundant in warm waters but is less 
effective as a zooplankton refuge because large numbers 
of small fish also find refuge there from their own 
predators (Meerhoff et al. 2007b). In both warm and  
cool waters a rise in phytoplankton tends to suppress 
submerged plants, but in warm waters submerged plants 
are often replaced by floating plants (Feuchtmayr et al. 
2009, Netten et al. 2010), which are even less effective as 
refuges (Meerhoff et al. 2007b). Pristine cold waters thus 
tend to be clear and dominated by submerged plants, while 
pristine warm waters are more likely to be naturally turbid 
with algae and cyanobacteria and covered with floating 
plants, although the densest communities tend to be 
associated with eutrophication.

Warming increases eutrophication 
symptoms

Rising nutrient inputs and increasing temperatures  
tend mutually to intensify eutrophication symptoms. 
Cyanobacterial dominance, predominance of floating 
plants, and perhaps even complete loss of underwater 
vegetation, occurs at lower nutrient concentrations as  
temperatures increase (Kosten et al. 2009). The deoxygen-
ation that may kill fish on still summer nights becomes 
worse as both nutrients and temperature increase. 
Moreover, rising temperature increases the nutrient 

Fig. 1.  Some relationships now established that link climate change and eutrophication symptoms.
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loading by increasing the rate of mineralization in 
catchment soils (Rustad et al. 2001, Brookshire et al. 
2011) and causing greater deoxygenation at the surfaces 
of lake sediments, so that more nutrients are released  
in summer (Jensen and Andersen 1995). Also often 
associated with increasing temperature are short, intense 
storms that increase soil erosion and delivery of nutrients 
and decreased rainfall in summer or dry seasons. 
Consequent falling lake levels may concentrate the 
nutrients already present, expose marginal sediment to 
mineralization and nutrient release, and increase residence 
times, favouring bigger crops of slow-growing but 
persistent phytoplankters like cyanobacteria. 

Does eutrophication promote climate 
change?

Eutrophication may also conversely promote climate 
change, although the evidence is less certain (Fig. 2). 
Freshwaters are often sources of carbon dioxide (Cole  
et al. 1994) because they metabolise organic matter 
washed in from vegetated catchments (Tranvik et al. 
2009), or at least from surrounding swamps. Warming will 
increase the loss of dissolved organic carbon from land to 

freshwaters (Larsen et al. 2011). Eutrophication may lead 
to lower proportionate dependence on imported organic 
matter and greater autotrophic fixation of carbon dioxide; 
nonetheless, it also leads to increased absolute production 
and respiration, greater release of methane from deoxy-
genated waters and sediments, (Bastviken et al. 2008, 
2011), and more nitrous oxide from denitrification 
(Huttunen et al. 2003). Both the latter gases are more 
effective greenhouse gases (by factors of 21 and 310, 
respectively) than carbon dioxide, but we do not yet know 
what the net balance of greenhouse gas release and heat 
retention due to eutrophication might be. Warming 
decreases the effectiveness of sediments in carbon storage 
(tropical soils and sediments tend to be more inorganic 
than temperate ones), releases more of the stored methane 
(Walter et al. 2006), and increases the community 
respiration to gross photosynthesis ratio in the short term 
at least (Gudasz et al. 2010, Moss 2010, Yvon-Durocher et 
al. 2010, 2011). There can be positive feedback effects on 
heat retention by denser blooms because turbid waters are 
more heat-retentive (Quayle et al. 2002), especially when 
blooms are present (Kahru et al. 1993). Warming may also 
promote invasion of productive cyanobacterial species to 
greater latitudes (Wiedner et al. 2007), where their 

Fig. 2.  Current indications of feedback effects of eutrophication on climate change. Blue arrows indicate carbon sequestration routes; red 
arrows indicate carbon emission routes; black arrows indicate other climate effects. Because CO2 uptake and release may both increase with 
eutrophication, net CO2 balance is unclear. The increase in methane and nitrous oxide is more probable. Dashed arrow indicates that changes in 
precipitation regimes may either lead to more or less organic carbon loading, depending on local and regional circumstances.
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potential dominance at high nutrient loading may 
reinforce warming effects. Likewise, endorheic lakes, 
which have large surface area to volume ratios, are major 
contributors to carbon dioxide release (Duarte et al. 2008). 
Warming-induced eutrophication will render them even 
more likely to release greenhouse gases as algal crops 
increase, sediments become intensely anaerobic, more 
heat is absorbed, and respiration rates accelerate. Clearly 
this is an area for future research.

Achieving a solution?

To date, climate change has not been factored into 
mitigation strategies for preexisting environmental 
impacts of our culture. It does not feature in the US Clean 
Water Act (US Government 1972) or the European Water 
Framework Directive (European Commission 2000), but 
where improvement of ecological or water quality is based 
on reference standards, the mutual effects of temperature 
and nutrient input will mean that existing standards  
will become harder to achieve and increasingly invalid 
(Bennion et al. 2011). Current policy in Europe is that 
climate mitigation should not compromise attempts  
to solve other environmental problems (European 
Commission 2009), and in the case of eutrophication, it 
might help that mitigation of both climate change and 
eutrophication requires some of the same approaches. But 
these two problem battalions are not alone, and all we 
have at present are some tactics to deflect them but no 
overall policy strategy to win the war.

Acknowledgement

We thank A.R. Joyner very much for his excellent drawing 
of the figures.

References

Bastviken D, Cole J, Pace ML, Van de Bogert MC. 2008. Fates of 
methane from different lake habitats: Connecting whole-lake budgets 
and CH4 emissions. J Geophys Res-Biogeogr. J Geophys Res. 113, 
G02024, doi:10.1029/2007JG000608. 

Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A. 2011. 
Freshwater methane emissions offset the continental carbon sink. 
Science. 331:50.

Bennion, H, Battarbee RW, Sayer CD, Simpson GL, Davison TA. 
2011. Defining reference conditions and restoration targets for lake 
ecosystems using palaeolimnology: a synthesis. J Palaeolimnol. 
45:533–544.

Brookshire ENJ, Gerber S, Webster JR, Nose JM, Swank WT. 2011. 
Direct effects of temperature on forest nitrogen cycling revealed 
through analysis of long-term watershed records. Glob Change Biol. 
17:297–308.

Cole JJ, Caraco NF, Kling GW, Kratz TK. 1994. Carbon dioxide  
supersaturation in the surface waters of lakes. Science. 265: 
1568–1570.

Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL. 2009.  
Eutrophication of U.S. freshwaters: analysis of potential economic 
damages. Environ Sci Technol. 43:12–19.

Duarte CM, Prairie YT, Montes C, Cole JJ, Striegl R, Melack J, 
Downing JA. 2008. CO2 emissions from saline lakes: A global 
estimate of a surprisingly large flux. J Geophys Res. 113: G04041, 
DOI:10.1029/2007JG000637.

Elliot JA. 2010. The seasonal sensitivity of Cyanobacteria and other 
phytoplankton to changes in flushing rate and water temperature. 
Glob Change Biol. 16:864–876.

Elliot JA, Jones ID, Thackeray SJ. 2006. Testing the sensitivity of  
phytoplankton communities to changes in water temperature and 
nutrient load, in a temperate lake. Hydrobiologia. 559:401–411.

Elser JJ, Andersen T, Baron JS, Bergstrom A-K, Jansson M, Melack J, 
Downing JA. 2009. Shifts in lake N:P stoichiometry and nutrient 
limitation driven by atmospheric nitrogen deposition. Science. 
326:835–837.

European Commission. 2000. Directive 2000/60/EC of October 23, 
2000, of the European parliament and of the council establishing a 
framework for community action in the field of water policy. Official 
J Eur Community. L327:1–72.

European Commission. 2009. Common implementation strategy water 
framework directive. Guidance document No. 24. River basin 
management in a changing climate. Brussels. 

Feuchtmayr H, Moran R, Hatton K, Connor L, Heyes T, Moss B, 
Harvey I, Atkinson D. 2009. Global warming and eutrophication: 
effects on water chemistry and autotrophic communities in  
experimental, hypertrophic, shallow lake mesocosms. J Appl Ecol. 
46:713–723.

Gillooly JF, Dodson SI. 2000. Latitudinal patterns in the size distribu-
tion and seasonal dynamics of new world freshwater cladocerans. 
Limnol Oceanogr. 45: 22–30.

Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ. 
2010. Temperature-controlled organic carbon mineralization in lake 
sediments. Nature. 466:478–481.

Gyllstrøm M, Hansson L-A, Jeppesen E, Garcia-Criado F, Gross E, 
Irvine K, Kairesalo T, Kornijow R, Miracle MR, Nykänen M, et al. 
2005. The role of climate in shaping zooplankton communities of 
shallow lakes. Limnol Oceanogr. 50:2008–2021.

Havens KE, Schelske CL. 2001. The importance of considering 
biological processes when setting total maximum loads for 
phosphorus in shallow lakes and reservoirs. Environ Pollut. 113:1–9.

Huttunen JT, Alm J, Liikanen A, Juutinen S, Larmola T, Hammar T, 
Silvola J, Martikainen PJ. 2003. Fluxes of methane, carbon dioxide 
and nitrous oxide in boreal lakes and potential anthropogenic effects 
on the aquatic greenhouse gas emissions. Chemosphere. 52:609–621.

Iglesias C, Mazzeo N, Meerhoff M, Lacerot G, Clemente JM, Scasso F, 
Kruk C, Goyenola G, Garcia-Alonso J, Amsinck SL, et al. 2011. 
High predation is of key importance for dominance of small-bodied 
zooplankton in warm shallow lakes: evidence from lakes, fish 



DOI: 10.5268/IW-1.2.359

105Allied attack: climate change and eutrophication

Inland Waters (2011) 1, pp. 101-105 

exclosures and surface sediments. Hydrobiologia. DOI 10.1007/
s10750-011-0645-0.

Jensen HS, Andersen FØ.1995. Importance of temperature, nitrate and 
pH for phosphorus release from aerobic sediments of four shallow, 
eutrophic lakes. Limnol Oceanogr. 37:577–589.

Jeppesen, E, Kronvang B, Olesen JE, Audet J, Sondergaard M, 
Hoffman CC, Andersen HE, Lauridsen T, Bjerring R, Conde- 
Porcuna JM, et al. 2011 Climate change effects on nitrogen loading 
from cultivated catchments in Europe: implications for nitrogen 
retention, ecological state of lakes and adaptation. Hydrobiologia. 
663:1–21.

Jeppesen E, Meerhoff M, Holmgren K, González-Bergonzoni I, 
Teixeira-de Mello F, DeClerk SAJ, De Meester L, Søndergaard M, 
Lauridsen TL, Bjerring R, et al. 2010a. Impacts of climate warming 
on lake fish community structure and potential effects on ecosystem 
function. Hydrobiologia. 646:73–90.

Jeppesen, E, Moss B, Bennion H, Carvalho L, De Meester L, 
Feuchtmayr H, Friberg N, Gessner MO, Hefting M, Lauridsen TL,  
et al. 2010b. Interaction of climate change and eutrophication. In: 
Kernan M, Battarbee RW, Moss B, editors. Climate change impacts 
on freshwater ecosystems. Chichester (UK): Wiley-Blackwell. 
p. 119–151

Jöhnk K, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM. 
2008. Summer heatwaves promote blooms of harmful cyanobacteria. 
Glob Change Biol. 14:495–512.

Kahru M, Leppänen JM, Rud O. 1993. Cyanobacterial blooms cause 
heating of the sea surface. Mar Ecol Prog Ser. 101:1–7.

Kosten S, Huszar V, Becares E, Costa L, Van Donk E, Hansson L-A, 
Jeppesen, E, Kruk C, Lacerot G, Mazzeo N, et al. Forthcoming 2011. 
Warmer climate boosts cyanobacterial dominance in shallow lakes. 
Glob Change Biol.

Kosten S, Kamarainen A, Jeppesen E, van Nes ET, Peeters HM, 
Mazzeo N, Sassk L, Hauxwell J, Hansel-Welch N, Lauridsen T et al. 
2009. Climate-related differences in the dominance of submerged 
macrophytes in shallow lakes. Glob Change Biol. 15:2503–2517.

Larsen S, Andersen T, Hessen DO. 2011. Climate change predicted to 
cause severe increase of organic carbon in lakes. Glob Change Biol. 
17:1186–192.

Meerhoff M, Clemente JM, Texeira de Mello F, Iglesias C, Pedersen A, 
Jeppesen E. 2007a. Can warm climate-related structure of littoral 
predator assemblies weaken the clear water state in shallow lakes? 
Glob Change Biol. 13:1888–1897.

Meerhoff M, Iglesias C, De Mello FT, Clemente JM, Jensen, E, 
Lauridsen TL, Jeppesen E. 2007b. Effects of habitat complexity  
on community structure and predator avoidance behaviour of  
littoral zooplankton in temperate versus subtropical shallow lakes. 
Freshwater Biol. 52:1009–1021.

Moore MV, Folt CF, Stemberger RS. 1996. Consequences of elevated 
temperatures for zooplankton assemblages in temperate lakes. Arch 
Hydrobiol. 135:289–319.

Moss B. 2010. Climate change, nutrient pollution and the bargain of  
Dr Faustus. Freshwater Biol. 55 (Supp 1):175–187.

Netten JC, Arts GHP, Gylstra R, van Nes E, Scheffer M, Roijackers 
MM. 2010. Effect of temperature and nutrients on the competition 
between free-floating Salvinia natans and submerged Elodea nuttallii 
in mesocosms Fund Appl Limnol. 177:125–132.

Paerl HW, Huisman J. 2008. Blooms like it hot. Science. 320:57–58.
Quayle W, Peck LS, Peat H, Ellis-Evans JC, Harrigan PR. 2002. 

Extreme responses to climate change in Antarctic lakes. Science. 
295:645.

Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell M, Hartley 
AE, Cornellissen JHC, Gurevitch J. 2001. A meta-analysis of the 
response of soil respiration, net nitrogen mineralization, and 
aboveground plant growth to experimental ecosystem warming. 
Oecologia.126:543–562.

Texeira de Mello F, Meerhoff M, Peckan-Hekim Z, Jeppesen E. 2009. 
Substantial differences in littoral fish community structure and 
dynamics in subtropical and temperate lakes. Freshwater Biol. 
54:1202–1215.

Timms RM, Moss B. 1984. Prevention of growth of potentially dense 
phytoplankton populations by zooplankton grazing in the presence  
of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol 
Oceanogr. 29:472–486.

Tranvik L, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Balatore 
TJ, Dillon P, Finlay K, Fortino K et al. 2009. Lakes and reservoirs  
as regulators of carbon cycling and climate. Limnol Oceanogr. 
54:2298–2314.

Trolle D, Hamilton DJ, Pilditch CA, Duggan IC, Jeppesen E. 2011. 
Predicting the effects of climate change on trophic status of three 
morphologically varying lakes: implications for lake restoration and 
management. Environ Model Softw. 26:354–370.

US Government. 1972. Federal Water Pollution Control Amendments 
of 1972. Washington (DC): 86 Stat. 816. Amended by the Clean 
Water Act of 1977 and Water Quality Act of 1987. 

Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS III. 2006. 
Methane bubbling from Siberian thaw lakes as a positive feedback  
to climate warming. Nature. 443:71–75.

Wiedner C, Rucker J, Bruggemann R, Nixdorf B. 2007. Climate 
change affects timing and size of populations of an invasive  
cyanobacterium in temperate regions. Oecologia. 152:473–84.

Yvon-Durocher G, Jones JI, Trimmer M, Woodward G, Montoya JM. 
2010. Warming alters the metabolic balance of ecosystems. Phil T 
Roy Soc B. 365:2117–2126.

Yvon-Durocher G, Montoya JM, Jones JI, Woodward G, Trimmer M. 
2011. Warming alters the fraction of primary production released  
as methane in freshwater mesocosms. Glob Change Biol. 17: 
1225–1234.


