Monitoring Global Change impacts on Páramo Ecosystems in Ecuador

Priscilla Muriel Mera1, 2, Francisco Cuesta-Camacho2, Selene Báez2, Javier Irazábal1, Ricardo Jaramillo1
1: Pontificia Universidad Católica del Ecuador. Ecuador. 2: Consorcio para el Desarrollo de la Ecosfera Andina (CONDESAN)

AIM OF THE STUDIES

Ecuadorian Páramos have been identified as a national priority region, due to their sensitivity and vulnerability to environmental changes and to their relevance for the survival of low-income communities settled here. However, scientific information derived from quantitative experiments and long-term biodiversity monitoring processes is essential to reinforce the development of adaptation guidelines for High Andean ecosystems in face of global changes. These studies have been designed to contribute to the understanding and documentation of climate change impacts on Páramo plant communities.

STUDY SITES AND EXPERIMENTAL DESIGN

In order to determine specific climate warming effects on physiological adaptations present on Páramo plants, two monitoring sites have been established in the Ecuadorian High Andes: the Pichincha Volcanic Complex (2012) and the Antisana Ecological Reserve (2013).

Changes on Páramo diversity and community structure will be studied through the establishment of vegetation monitoring regions following the protocol of the Global Observation Research Initiation in Alpine Environments (GLORIA), each associated with a complementary research site based on an experimental design that supports the future incorporation of other modules, if new research questions arise.

SITE COMPONENTS

1. GLORIA Target region, composed by 4 summits
2. Complementary research site:
 • Module 2.1: Long-term monitoring on vegetation permanent plots
 • Module 2.2. Experimental warming and its effects on Páramo plants
 • Module 2.3. Effects of changes on soil nutrient availability, and herbivore exclusion on diversity and community structure

ESTABLISHMENT AND PRELIMINARY RESULTS

1. GLORIA target regions

Two target regions were established, following the protocol of the Global Observation Research Initiative in Alpine Environments Network, and are part of the GLORIA Andes chapter:

PICHINCHA VOLCANIC COMPLEX (ECPI)
- 152 flowering plant species (in 37 families)
- 2 Pteridophytes
- 18 Bryophytes species

ANTISANA ECOLOGICAL RESERVE (ECANT)
- 78 flowering plant species (in 26 families)
- 7 Pteridophytes (in 3 families)
- 6 Bryophytes species

2.1 Long-term monitoring on vegetation permanent plots

The vegetation monitoring process is based on the continuous sampling of all experimental 6 x 6 m units (four 1 x 1 m permanent plots per sampling unit), in order to answer the following questions:
1. What is the diversity, composition, and structure of vascular plant communities on High Andean ecosystems?
2. Will changes occur on the diversity, composition, and structure of vascular plant communities on a short (2 years) and long (>2 years) term?
3. What is the amount of aerial biomass present, according to the following categories: herbaceous plants, dead vascular plants, and dead biomass in general?

Ideally, each plot will be resampled every six months, during the periods of maximum growth for the vegetation.

On each survey, the composition and structure of the communities are recorded using three different methodologies:
1. Visual estimation of cover percentage on the 1 x 1 m plots,
2. Point-frame recording of species, using a divided frame,
3. Photographic documentation.

The figures at the right show the cumulative curves for the experimental units that have already been processed at both sites.

2.2 Experimental warming and its effects on Páramo plants: Open-Top Chambers

45 polycarbonate hexagonal Open-Top Chambers, following the International Tundra Experiment –ITEX– guidelines, have been set up on both sites (20 OTC’s in ECPI and 25 OTC’s in ECANT). The first phase of the project aims to determine the effects of experimental warming on the functional types of Páramo plant communities:
1. Effects of the experimental warming on plant growth form, focusing on selected Páramo species (see pictures).
2. Effect of the experimental warming on the freezing point observed on selected Páramo studies:
 1. Permanent lichen-temperature monitoring (at site)
 2. Experimental determination of freezing temperature

2.3 Effects of changes on soil nutrient availability and herbivore exclusion on diversity and community structure

Both experiments follow the protocol of the Global Nutrient Network (http://www.nutnet.umn.edu):
1. Determination of the effects of soil nutrient limitation: three nutrient treatments (1: Nitrogen —N—, 2: Phosphorous —P—, and 3: Potassium plus other micronutrients —K+micronutrients—) on 1 x 1 m experimental plots, each at two levels (control nutrient added), on a factorial desig for a total of 6 different treatment combinations (see table). The nutrients are applied only after the first year, at a relatively high yearly rate (10 g/m²)

2. Determination of the effects of native animals (camelines and small mammals) on the diversity and dynamics of the plant communities: 1–2 m high fences (herbivore exclusions) are built around the 6 x 6 m units (see experimental design).